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ABSTRACT 
 
     Cylindrical shell of variable thickness filled with fluid interaction using spline 
approximation is investigated to determine the vibrational behavior of the shell. The 
shell is made up of two layers of isotropic or specially orthotropic materials and the 
thickness variation is considered. In this study, irrotational of an inviscid fluid is used. 
The equations of shell are coupled with fluid term. Love’s first approximation theory is 
implemented to derive the equations of shell which are in terms of longitudinal, 
circumferential and transverse displacement functions. These functions are 
approximated using spline method, resulting in the generalized eigenvalue problem by 
combining the suitable boundary conditions. The thickness variations are assumed to 
be linear, exponential and sinusoidal along the axial direction of the cylinder. 
Frequency parameter and an associated eigenvector of the spline coefficients are 
analysed by considering various parameters such as relative layer thickness, length 
parameter, material properties, and coefficients of thickness variations under clamped-
clamped and simply-supported-simply supported boundary conditions, respectively. 
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1. INTRODUCTION 
 

Composite and laminated materials have gained significant traction in various 
industries due to their unique properties such as high strength-to-weight ratio, high 
stiffness and corrosion resistance. It provides design flexibility and can be tailored to 
meet specific performance requirements. Each layer in a laminated shells or plates can 
be oriented in different directions, allowing engineers or designers to optimize stiffness 
and strength in specific directions according to the load path (Reddy, 2004).  
 

Mathematical modeling on the vibrational behavior of the plate and shell 
structures has been extensively studied to determine frequencies and mode shapes. 
These works often employ different theoretical models such as classical theory and first 
order shear deformation theory. Several studies utilize various methods including 
analytical and finite element method (Attia et al., 2024), dynamic stiffness method (Zu 
and Wu, 2020) and generalized differential quadrature method (Bochkarev and 
Lekomtsev, 2025) to determine the vibrational behavior of the structures. In addition, 
frequencies of plate and shell structures are influenced by several factors like geometry 
(thickness, curvature, size), material properties, boundary conditions (clamped, simply 
supported, free) and thickness variation that determine their dynamic behavior and 
structural performance. Understanding these factors is crucial because it enables 
designers to predict behavior accurately and optimize the design. 
 

Variable thickness also known as non-uniform thickness have a thickness that 
changes across their geometry. The vibrational behavior on structures with the variable 
thickness has been addressed by many researchers such as studies on plates, 
cylindrical shells and conical shells.  These works often employ different theoretical 
models and methods. Lal and Saini (2020) focused on the vibration analysis of 
functionally graded circular plates of variable thickness under thermal environment by 
generalized differential quadrature method. Clamped and simply supported plates were 
considered. Results revealed that the frequencies of clamped plate are greater than the 
simply supported plate. Morruzi et al. (2024) used an adaptive finite element to 
investigate free vibration of variable thickness plates. Abdullah and Sani (2024) 
provided the comparative computational modal analysis of uniform and tapered plates. 
Finite element modal analysis was employed to determine the natural frequencies and 
mode shapes of plates. The results revealed that the plate with varying thickness has 
lower natural frequencies, and its mode shapes are more complex and asymmetric 
compared to the plates with uniform thickness.  
 

Miao et al. (2022) presented a unified approach for the analysis of free 
vibrations of the three-layer functionally graded cylindrical shell with non-uniform 
thickness. The Sanders’ shell theory is implemented to obtain the strain and curvature-
displacement relations. Rayleigh–Ritz method and Chebyshev polynomials are 
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employed to improve computational efficiency. El-Kaabazi and Kennedy (2012) 
implemented dynamic stiffness equations to investigate the variable thickness 
cylindrical shells under the assumptions of Donnell, Timoshenko and Flügge theories. 
Wittrick–Williams algorithm is used to determine natural frequencies. Results found that 
by increasing the thickness variation, the natural frequencies decrease for asymmetric 
linear and quadratic taper, but frequencies increase for symmetric taper. The 
generalized differential quadrature method was performed by Tornabene et al. (2017) 
to evaluate the vibrational behavior of FGM sandwich shells with variable thickness.  
 

Research involving fluid interaction in variable thickness structures is relatively 
sparse due to the added complexity of fluid-structure coupling. Several studies have 
adopted Love’s classical shell theory, also known as Love’s first approximation, for 
modelling thin shell structures where shear deformation is negligible. Izyan et al. (2024) 
investigated the free vibration behavior of layered conical shells of variable thickness, 
considering the influence of fluid interaction. The study utilized Love’s first 
approximation theory. The displacement functions were approximated using a spline 
method to solve the governing equations and the impact of different radial thickness 
variations such as linear, exponential, and sinusoidal was evaluated under clamped-
clamped and simply supported boundary conditions.  
 

Li et al. (2020) studied free vibration of the variable thickness functionally 
graded materials beams in fluid based on Timoshenko beam theory. The governing 
equations and boundary conditions are derived by using Hamilton’s principle and then 
discretized by using differential quadrature method. In addition, Murari et al. (2023) 
implemented the functionally graded graphene origami-enabled auxetic metamaterial 
beams with variable thickness. The beam is placed vertically in fluid. Geometry of the 
three non-uniform beams considered which are bi-linear, bi-cubical and bi-sinusoidal. 
The equations are based on first order shear deformation theory and solved using 
differential quadrature and Bolotin’s method. Moreover, Esmaeilzadehazimi et al. (2024) 
developed a finite element method model based on Sanders’ thin shell theory to 
explore the dynamic instability of ring-stiffened conical shells subjected to internal 
flowing fluid. The study concluded that ring stiffeners significantly affect the stability of 
the cone under different boundary conditions. Instability in stiffened shells occurs at 
higher critical fluid velocities than in unstiffened shells across all boundary conditions.  

 
Therefore, this study investigates the vibration of cylindrical shell with variable 

thickness in the presence of fluid. While variable thickness without fluid has been 
extensively studied, the literature on variable thickness with the presence of fluid 
interaction remains limited. Hence, this study ultimately aims to contribute to the less-
explored domain of variable thickness shell structures under fluid interaction. The 
equations of motion are based on Love’s first approximation theory. Shell is made up of 
two layers and the thickness variations are presented in several functions namely linear, 
exponential and sinusoidal along the radial direction under Clamped-Clamped (C-C) 
and Simply-supported Simply-supported (S-S) boundary conditions. Spline method is 
implemented in this study and this method is one of approximate method in solving 
boundary value problems (Bickley,1968). Other literatures that implemented spline 
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method in their study to solve vibration behavior include layered cylindrical shells 
(Viswanathan & Navaneethakrishnan, 2003), layered truncated conical shells filled with 
quiescent fluid (Izyan et al., 2017) and cross-ply laminated plates (Javed et al., 2018). 
A generalized eigenvalue problem is solved numerically for the frequency parameter 
and an associated eigenvector of the spline coefficients. Frequencies with respect to 
relative layer thickness, length parameter, types of material, and coefficients of 
thickness variations are analysed. 
 
 
2. MATHEMATICAL FORMULATION 
 

A thin layered circular cylindrical shell (length ℓ, constant thickness h, radius r) is 
considered. Each layer is assumed to be homogeneous, linearly elastic and isotropic or 
specially orthotropic. The x coordinate of the shell is taken along the longitudinal 
direction, θ and z coordinate are in the circumferential and radial direction respectively. 
Equations of motion for cylindrical shell coupled with fluid is written as   
 

𝜕𝑁𝑥
𝜕𝑥

+
1

𝑟

𝜕𝑁𝜃𝑥
𝜕𝜃

= 𝜌ℎ
𝜕2𝑢

𝜕𝑡2
,
𝜕𝑁𝑥𝜃
𝜕𝑥

+
1

𝑟

𝜕𝑁𝜃
𝜕𝜃

+
1

𝑟

𝜕𝑀𝑥𝜃
𝜕𝑥

+
1

𝑟2
𝜕𝑀𝜃
𝜕𝜃

= 𝜌ℎ
𝜕2𝑣

𝜕𝑡2
, 

𝜕2𝑀𝑥
𝜕𝑥2

+
2

𝑟

𝜕𝑀𝜃𝑥
𝜕𝑥𝜕𝜃

+
1

𝑟2
𝜕2𝑀𝜃
𝜕𝜃2

−
𝑁𝜃
𝑟
= 𝜌ℎ (

𝜕2𝑤

𝜕𝑡2
−
𝑝

𝜌ℎ
), 

        
 
(2.1) 

 
where 𝑁𝑥, 𝑁𝜃 and 𝑁𝑥𝜃  are the stress resultants, 𝑀𝑥 , 𝑀𝜃 and 𝑀𝑥𝜃  are the moments 
resultants and 𝑝 is the pressure. 
 

The fluid is assumed to be incompressible. Irrotational flow of an inviscid fluid 
undergoing small oscillations is expressed as wave equation. According to Zhang et al. 
(2001), the equation of motion of the fluid can be written in the cylindrical coordinates 
system (x, θ, r)  
 

𝜕2𝑝

𝜕𝑟2
+
1

𝑟

𝜕𝑝

𝜕𝑟
+
1

𝑟2
𝜕2𝑝

𝜕𝜃2
+
𝜕2𝑝

𝜕𝑥2
=
𝜕2𝑝

𝑐2𝜕𝑡2
 

(2.2) 

 
where t is the time, p is the pressure and c is the sound of speed of the fluid. The x and 
θ -coordinates are the same as those of the shell, where the r-coordinate is taken from 
the x-axis of the shell. 
 

The thickness of the kth layer is assumed in the form ℎ𝑘(𝑥) = ℎ0𝑘𝑔(𝑥), where 
ℎ0𝑘  is a constant thickness. In general, the thickness variation of each layer is 
assumed in the form ℎ𝑘(𝑥) = ℎ0𝑔(𝑥), and 

 

𝑔(𝑥) = 1 + 𝐶ℓ

𝑥

ℓ
+ 𝐶𝑒 𝑒𝑥𝑝 (

𝑥

ℓ
) + 𝐶𝑠 𝑠𝑖𝑛 (

𝜋𝑥

ℓ
). (2.3) 
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If 𝑔(𝑥) = 1 , then the thickness becomes uniform. Therefore, 𝐴𝑖𝑗 ,  𝐵𝑖𝑗 and 𝐷𝑖𝑗 

corresponding to layers of uniform thickness with superscript 'c ' can easily be obtained 
as 𝐴𝑖𝑗 = 𝐴𝑖𝑗

𝑐 𝑔(𝑥), 𝐵𝑖𝑗 = 𝐵𝑖𝑗
𝑐 𝑔(𝑥), 𝐷𝑖𝑗 = 𝐷𝑖𝑗

𝑐 𝑔(𝑥), 

 
in which 
 

𝐴𝑖𝑗
𝑐 =∑𝑄̄𝑖𝑗

𝑘

𝑘=1

(𝑧𝑘 − 𝑧𝑘−1), 𝐵𝑖𝑗
𝑐 =

1

2
∑𝑄̄𝑖𝑗

𝑘

𝑘=1

(𝑧𝑘
2 − 𝑧𝑘−1

2 ), 𝐷𝑖𝑗
𝑐 =

1

3
∑ 𝑄̄𝑖𝑗

𝑘

𝑘=1

(𝑧𝑘
3 − 𝑧𝑘−1

3 ) 

 
with  𝑖, 𝑗 = 1,2,6, 𝑧𝑘, 𝑧𝑘−1 are boundaries of the kth layer. 
 
The displacement components 𝑢, 𝑣 and 𝑤 are assumed in the form of 
 

𝑢(𝑥, 𝑡) = 𝑈(𝑥) 𝑐𝑜𝑠 𝑛 𝜃𝑒𝑖𝜔𝑡, 𝑣(𝑥, 𝑡) = 𝑉(𝑥) 𝑠𝑖𝑛 𝑛 𝜃𝑒𝑖𝜔𝑡, 𝑤(𝑥, 𝑡) = 𝑊(𝑥) 𝑐𝑜𝑠 𝑛 𝜃𝑒𝑖𝜔𝑡, (2.4) 

  
where 𝑥 is the longitudinal, 𝜃 is the rotational, 𝜔 is the angular frequency of vibration, 
n is the circumferential node number and t is the time.  
 
The non-dimensional parameters are as follows 
 

𝐿 =
ℓ

𝑟
; a length parameter 

𝑋 =
𝑥

ℓ
; a distance coordinate 

𝛿𝑘 =
ℎ𝑘
ℎ
;  a relative layer thickness of k-th layer 

𝐻 =
ℎ

𝑟
; the thickness parameter 

𝜆 = 𝜔ℓ√
𝑅0
𝐴11

; a frequency parameter 

𝑅 =
𝑟

ℓ
; a radius parameter 

 
 
 
 
 
(2.5) 

 
Here r is the radius of the cylinder and h is the total thickness of the shell. Since 

only two layers is considered in this study, therefore, 𝛿 = 𝛿1 and 𝛿2 = 1 − 𝛿1. The 
thickness of the kth layer of the shell is assumed in the form 

0( ) ( ).k kh X h g X=  ℎ0𝑘 is a 

constant thickness. Therefore, 𝑔(𝑋) = 1 + 𝐶ℓ𝑋 + 𝐶𝑒 𝑒𝑥𝑝(𝑋) + 𝐶𝑠 𝑠𝑖𝑛(𝜋𝑋). If (𝐶𝑒 = 𝐶𝑠 =

0), then the thickness variation becomes linear. It can be written as 𝐶ℓ =
1

𝜂
− 1, where 

𝜂  is the taper ratio 
ℎ𝑘(0)

ℎ𝑘(1)
 . If ( 𝐶ℓ = 𝐶𝑒 = 0 ), then the excess thickness varies 

exponentially. If (𝐶ℓ = 𝐶𝑒 = 0), then the excess thickness varies sinusoidally. The 
thickness of the layer at X = 0 is  ℎ0𝑘 for the first and third cases, but the thickness is  

ℎ0𝑘(1 + 𝐶𝑒) for the second case. 
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In obtaining equations of shell coupled with fluid, substituting Eq. (2.2) into 
stress and momentum resultants, then substituting into Eq. (2.1). Next, applying Eq. 
(2.4-2.5), the equations in the matrix form are obtained as follows 

 

(
𝐿11 𝐿12 𝐿13
𝐿21 𝐿22 𝐿23
𝐿31 𝐿32 𝐿33

)(
𝑈
𝑉
𝑊
) = (

0
0
0
), 

        
(2.6) 

 
where 𝐿𝑖𝑗(𝑖 = 1,2,3; 𝑗 = 1,2,3) are the differential operators given as follows 

 

𝐿11 =
𝑑2

𝑑𝑋2
+
𝑔′

𝑔

𝑑

𝑑𝑋
− 𝑆10

𝑛2

𝑅2
+ 𝜆2, 

𝐿12 =
𝑛

𝑅
(𝑆2 + 𝑆5

1

𝑅
)
𝑔′

𝑔′
+
𝑛

𝑅
(𝑆2 + 𝑆10 +

1

𝑅
(𝑆5 + 𝑆11) +)

𝑑

𝑑𝑋
, 

𝐿13 = −𝑆4
𝑑3

𝑑𝑋3
− 𝑆4

𝑔′

𝑔

𝑑2

𝑑𝑋2
+ (

𝑛2

𝑅2
(𝑆5 + 2𝑆11) + 𝑆2

1

𝑅
)
𝑑

𝑑𝑋
+
𝑔′

𝑔𝑅
(𝑆2 + 𝑆5

1

𝑅
+) , 

𝐿21 = −
𝑛

𝑅
(𝑆2 + 2𝑆10 +

1

𝑅
(𝑆5 + 2𝑆11))

𝑑

𝑑𝑋
−
𝑛

𝑅
(𝑆10 + 𝑆11

1

𝑅
)
𝑔′

𝑔
, 

𝐿22 = (𝑆10 +
2𝑆11
𝑅
+
𝑆12
𝑅2
)
𝑑2

𝑑𝑋2
+ (𝑆10 +

2𝑆11
𝑅
+
𝑆12
𝑅2
)
𝑑

𝑑𝑋
−
𝑛2

𝑅2
(𝑆3 +

2𝑆6
𝑅
+
𝑆9
𝑅2
) + 𝜆2, 

𝐿23 =
𝑛

𝑅
(2𝑆11 + 𝑆5 +

2𝑆12
𝑅
+
𝑆8
𝑅
)
𝑑2

𝑑𝑋2
+
𝑛

𝑅

𝑔′

𝑔
(2𝑆11 +

2𝑆12
𝑅
)
𝑑

𝑑𝑋
−
𝑛

𝑅3
((1 + 𝑛2)𝑆6 + 𝑛

2
𝑆9
𝑅
)

−
𝑛𝑆3
𝑅2
, 

        
 

 

𝐿31 = 𝑆4
𝑔′

𝑔

𝑑2

𝑑𝑋2
+ (𝑆4 (

𝑔′2

𝑔2
+ 𝑆10

𝑛2

𝑅2
)
𝑔″

𝑔′
−
𝑆2
𝑅
−
𝑛2

𝑅2
(𝑆5 + 2𝑆11) − 𝜆

′2𝑆4)
𝑑

𝑑𝑋
− 2𝑆11

𝑔′

𝑔

𝑛2

𝑅2
, 

𝐿32 =
𝑛

𝑅
(2𝑆11 + 𝑆5 +

1

𝑅
(𝑆8 + 2𝑆12)) − 𝑆4 (𝑆2 + 𝑆10 +

1

𝑅
(𝑆5 + 𝑆11))

𝑑2

𝑑𝑋2

+
𝑛

𝑅

𝑔′

𝑔
(2 (𝑆5 + 𝑆11 +

𝑆8
𝑅
+
𝑆12
𝑅
) − 𝑆4 (𝑆2 +

𝑆5
𝑅
))

𝑑

𝑑𝑋
 

−
𝑛

𝑅
(
𝑛2

𝑅2
(𝑆6 +

𝑆9
𝑅
) +

𝑆3
𝑅
+
𝑆6
𝑅2
− 𝑆5

𝑔″

𝑔
−
𝑆8
𝑅

𝑔″

𝑔
+ 𝑆4 (𝑆2 +

𝑆5
𝑅
)(
𝑔″

𝑔
−
𝑔′2

𝑔2
)) , 
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𝐿33 = (𝑆4
2 − 𝑆7)

𝑑4

𝑑𝑋4
+ (𝑆4

2 − 2𝑆7)
𝑔′

𝑔

𝑑3

𝑑𝑋3

+ (
2𝑆5
𝑅
− 𝑆7

𝑔″

𝑔
+
𝑛2

𝑅2
(4𝑆12 + 2𝑆8)

− 𝑆4(
𝑛2

𝑅2
(𝑆5 + 2𝑆11) +

𝑆2
𝑅
− 𝑆4 (

𝑔″

𝑔
−
𝑔′2

𝑔2
)))

𝑑2

𝑑𝑋2
 

+
𝑔′

𝑔
(
2𝑆5
𝑅
+
2𝑛2

𝑅2
(𝑆8 + 2𝑆12) − 𝑆4 (𝑆5

𝑛2

𝑅2
+
𝑆2
𝑅
))

𝑑

𝑑𝑋

−

(

 
 

𝑛2

𝑅2
(
2𝑆6
𝑅
− 𝑆8

𝑔″

𝑔
) +

𝑛4

𝑅4
𝑆9 +

𝑆3
𝑅2
−
𝑆5
𝑅

𝑔″

𝑔

+𝑆4 (𝑆5
𝑛2

𝑅2
+
𝑆2
𝑅
)(
𝑔″

𝑔
−
𝑔′2

𝑔2
)

)

 
 
+ 𝜆2 (1 +

𝜌𝑓

𝜌𝑠ℎ

𝐽𝑛(𝑅)

𝐽𝑛′ (𝑅)
). 

 
with 

𝑆2 =
𝐴12
𝐴11

, 𝑆3 =
𝐴22
𝐴11

, 𝑆4 =
𝐵11
ℓ𝐴11

, 𝑆5 =
𝐵12
ℓ𝐴11

, 𝑆6 =
𝐵22
ℓ𝐴11

, 𝑆7 =
𝐷11

ℓ
2
𝐴11

, 𝑆8 =
𝐷12

ℓ
2
𝐴11

, 

𝑆9 =
𝐷22

ℓ
2
𝐴11

, 𝑆10 =
𝐴66
𝐴11

, 𝑆11 =
𝐵66
ℓ𝐴11

, 𝑆12 =
𝐷66

ℓ
2
𝐴11

, 𝜆2 =
𝑅0𝜔

2

𝐴11
, 𝑅0 = 𝜌ℎ. 

 

 
 
3. METHODS OF SOLUTION 
 

The spline approximation is a lower order approximation which yields a better 
accuracy than a global higher order approximation (Bickley,1968). The displacement 
functions 𝑈(𝑋), 𝑉(𝑋) and 𝑊(𝑋) are approximated by cubic and quintic spline functions 
𝑈∗(𝑋), 𝑉∗(𝑋) and 𝑊∗(𝑋), respectively as follows 

 

𝑈∗(𝑋) =∑𝑎𝑖𝑋
𝑖 +∑ 𝑏𝑗(𝑋 − 𝑋𝑗)

3
𝑁−1

𝑗=0

2

𝑖=0

𝐻(𝑋 − 𝑋𝑗), 

𝑉∗(𝑋) =∑𝑐𝑖𝑋
𝑖 +∑ 𝑑(𝑋 − 𝑋𝑗)

3
𝑁−1

𝑗=0

2

𝑖=0

𝐻(𝑋 − 𝑋𝑗), 

𝑊∗(𝑋) =∑𝑒𝑖𝑋
𝑖 +∑ 𝑓𝑗(𝑋 − 𝑋𝑗)

5
𝑁−1

𝑗=0

4

𝑖=0

𝐻(𝑋 − 𝑋𝑗). 

        
 
 
 
(2.7) 

 

Here, 𝐻(𝑋 − 𝑋𝑗) is the Heaviside step function. N is the number of intervals in the 

range of 𝑋 ∈ [0,1] is divided. The points of division 𝑋 = 𝑋𝑠 =
𝑠

𝑁
, (𝑠 = 0,1,2, . . . 𝑁) are 
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chosen as the knots of the splines as well as the collocation points. Imposing the 
condition that the differential equations given by Eq. (2.6) are satisfied by these splines 
at the knots, a set of (3𝑁 + 3)  homogeneous equations into (3𝑁 + 11)  unknown 
spline coefficients 𝑎𝑖, 𝑏𝑗, 𝑐𝑖, 𝑑𝑗 , 𝑒𝑖, 𝑓𝑗(𝑖 = 0,1,2,3,4; 𝑗 = 0,1,2, . . . , 𝑁 − 1) are obtained.  

 
The following boundary conditions are considered  
 

i. Clamped-Clamped (C-C) (both the ends are clamped) 
 

𝑈 = 0, 𝑉 = 0,𝑊 = 0,
𝑑𝑊

𝑑𝑋
= 0 at 𝑋 = 0 and 𝑋 = 1. 

 
ii. Simply-Supported (S-S) (both the ends are simply supported) 

 
𝑈 = 0, 𝑉 = 0,𝑊 = 0,𝑀𝑥 = 0 at 𝑋 = 0 and 𝑋 = 1. 

 
By applying each of these boundary conditions separately, we can obtain 8 more 
equations on spline coefficients. Combining these 8 equations with the earlier (3𝑁 + 3) 
equations, we get (3𝑁 + 11) homogeneous equations in the same number unknowns. 
Therefore, a generalized eigenvalue problem can be obtained as follows 
 

[𝑀]{𝑞} = 𝜆2[𝑃]{𝑞}, (2.8) 

 
where [M] and [P] are the square matrices, {q} is the column matrix of the eigenvector 
of the spline coefficients and λ is the eigenparameter.

 
 
 
4. RESULTS ANALYSIS 
 

Free vibration of two layered circular cylindrical shell of variable thickness was 
analysed. Boundary conditions considered are Clamped-Clamped (C-C) and Simply-
supported Simply-supported (S-S) boundary conditions. Two types of materials are 
used namely High Strength Graphite (HSG) and S-Glass Epoxy (SGE) materials 
(Elishakoff and Stavsky, 1979). The density of fluid used in this study is 𝜌𝑓 = 1000kg/

m3. Relative layer thickness, thickness variation and length variation on frequencies 
with different boundary conditions were analysed. The first three modes of vibration 
were selected for the frequencies and results were illustrated in Tables and Figures. To 
verify the convergence of the spline method, convergence study was conducted to 
determine the frequency parameters of two layered shells with fluid. From the results, 
the number of knots N=14 is chosen since for the next value of N, the percentage 
change in the values of 𝜆 is very low, the maximum being 0.3%. 
 

The variation of frequency parameter 𝜆𝑚(𝑚 = 1,2,3) with respect to the relative 
thickness 𝛿  under linear variation in thickness (𝜂=0.75), exponential variation in 
thickness (𝐶𝑒=0.2) and sinusoidal variation in thickness (𝐶𝑠=0.25) under C-C and S-S 
boundary conditions are shown in Fig. 1. Two layered shells are arranged in the order 
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of HSG and SGE materials. The values of the circumferential number n=2, the ratio of 
the shell’s constant thickness to radius H=0.02, and the ratio of the shell length to the 

radius L=1.5 are fixed. Frequencies under C-C boundary conditions are shown in 
Fig.1(a), Fig.1(b), Fig.1(c) meanwhile frequencies under S-S boundary conditions are 
shown in Fig.1(d), Fig.1(e), Fig.1(f). From Fig.1, at 𝛿=0, the inner layer disappears, 
and the shell is homogeneous, which is made of SGE material. At 𝛿=1 the outer layer 
disappears, again the shell is homogeneous, made of HSG material. Generally, as 𝛿 

increase, 𝜆𝑚 decreases for (𝑚 = 1,2) for all values of 𝛿 ≥ 0.2.  
 

Then, the study was conducted for the shell under S-S boundary conditions. 
Results showed that the behavioral frequencies are like C-C boundary conditions, 
however, the values on S-S boundary conditions are lower compared to C-C boundary 
conditions. 
 

Fig. 2 depicts the variation of frequencies   on length parameter for two 

layered shells with the materials arranged in the order HSG-SGE with 𝛿 = 0.5, 𝐻 =
0.02 and 𝑛 = 2 under C-C boundary conditions as well as S-S boundary conditions. 
The variation in thickness of layer; 𝜂=0.7, 𝐶𝑒=0.1 and 𝐶𝑠=0.2 are fixed. For C-C 
boundary conditions, the variation of angular frequencies   on length parameter with 

variation in thickness of layers with 𝜂=0.7, 𝐶𝑒=0.1 and 𝐶𝑠=0.2 as shown in Fig. 2(a), 
Fig. 2(b) and Fig. 2(c), respectively. Moreover, for S-S boundary conditions, the 
variation of angular frequencies   on length parameter with variation in thickness of 

layers with 𝜂=0.7, 𝐶𝑒=0.1 and 𝐶𝑠=0.2 as shown in Fig. 2(d), Fig. 2(e) and Fig. 2(f), 
respectively. 
 

For the length of the cylinder for its vibrational behavior, the angular frequency 

  is considered instead of  . Results revealed that as L  increases,  will decrease. 

In the range of 0.5 0.75L  , the frequencies decrease fast. The frequency decreases 

slowly in the range of 0.75 2L  . It can be observed that all the frequencies of C-C 

boundary conditions will give higher values compared to S-S boundary conditions. 
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Fig. 1 Variation of frequency parameter 𝜆𝑚 (𝑚 = 1,2,3) with relative layer thickness for 
two layered shells C–C and S-S boundary conditions 
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Fig 2 Effect of length of the shell on frequency parameter 𝜔𝑚(x10

3𝐻𝑧) for different 
types of variation in thickness of layers for two layered shells under C–C and S-S 

boundary conditions 
 

Three types of variable thickness namely linear, exponential and sinusoidal 
were investigated on the vibrational behavior of two layered cylindrical shell with fluid. 
The influence of linear (𝜂=0.75), exponential (𝐶𝑒 =0.2) and sinusoidal (𝐶𝑠 =0.25) 
variations in thickness of layers on frequency parameters under C–C boundary 
conditions are shown in Table 1, Table 2 and Table 3, respectively. The values of H = 
0.02, L = 1.5, 𝛿 = 0.5  and n = 2,4 are fixed.  

 
The study was extended by considering the shell under S-S boundary 

conditions. The study on the effect of linear (𝜂=0.75), exponential (𝐶𝑒=0.2) and 
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sinusoidal (𝐶𝑠=0.25) variations in thickness of layers on frequency parameters is 
depicted in Table 4, Table 5 and Table 6, respectively. The values of H = 0.02, L = 1.5, 
𝛿 = 0.5  and n = 2,4 are fixed.  

 
Based on the results, the variable thickness has significant effect on the 

frequencies of the shell. For linear variation, the frequencies increase in the range 0.5 
≤ 𝜂 ≤  0.7 and then it slightly decreases. For exponential variation, the values of 
frequencies decrease from 𝐶𝑒 =  -0.2 to 𝐶𝑒 =  -0.1 and then it slightly increases. 

Meanwhile, the values of 𝜆𝑚(𝑚 = 1,2,3)  for the sinusoidal variation are almost 

constant. In general, results showed that the values of  𝜆𝑚(𝑚 = 1,2,3) for n=4 are 
higher compared to the values of 𝜆𝑚(𝑚 = 1,2,3)  for n=2. Overall, the values of  
𝜆𝑚(𝑚 = 1,2,3)  under C-C boundary conditions are higher compared to those values of  
𝜆𝑚(𝑚 = 1,2,3)  under S-S boundary conditions. 
 
 
Table 1 Variation of frequency parameters 𝜆𝑚 (𝑚 = 1,2,3)  with respect to the 
thickness parameter 𝜂 under C-C boundary conditions for two layered shells 
 

𝐻 = 0.02, 𝛿 = 0.5, 𝐿 = 1.5   

𝜂 
𝑛 = 2 𝑛 = 4 

𝜆1 𝜆2 𝜆3 𝜆1 𝜆2 𝜆3 

0.5 0.096585 0.104412 0.126523 0.138833 0.150811 0.182922 

0.7 0.114168 0.123721 0.149532 0.163594 0.177454 0.214732 

0.9 0.101595 0.109693 0.132521 0.145762 0.158161 0.191305 

1.1 0.092041 0.099566 0.120274 0.132374 0.144046 0.174213 

1.3 0.084924 0.091815 0.11091 0.122492 0.133148 0.161032 

1.5 0.079239 0.085639 0.103457 0.114535 0.124411 0.150475 

1.7 0.07456 0.080574 0.097349 0.10794 0.11721 0.141784 

1.9 0.070621 0.076324 0.09223 0.102353 0.111148 0.134477 

2.1 0.067244 0.072696 0.087866 0.097543 0.105957 0.128224 
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Table 2 Variation of frequency parameters 𝜆𝑚(𝑚 = 1,2,3) with respect to the thickness 
parameter 𝐶𝑒 under C-C boundary conditions for two layered shells 
 

𝐻 = 0.02, 𝛿 = 0.5, 𝐿 = 1.5 

𝐶𝑒  
𝑛 = 2 𝑛 = 4 

𝜆1 𝜆2 𝜆3 𝜆1 𝜆2 𝜆3 

-0.2 0.086554 0.093604 0.113081 0.124762 0.135671 0.164096 

-0.1 0.082712 0.089431 0.108046 0.119403 0.129782 0.156982 

0 0.096555 0.104261 0.12595 0.138309 0.150608 0.182157 

0.1 0.10805 0.117018 0.141361 0.155122 0.168352 0.205625 

0.2 0.118416 0.12832 0.15508 0.16942 0.18371 0.222289 

 
 
 
Table 3 Variation of frequency parameters 𝜆𝑚 (𝑚 = 1,2,3)  with respect to the 
thickness parameter 𝐶𝑠 under C-C boundary conditions for two layered shells 
 

𝐻 = 0.02, 𝛿 = 0.5, 𝐿 = 1.5 

𝐶𝑠  
𝑛 = 2 𝑛 = 4 

𝜆1 𝜆2 𝜆3 𝜆1 𝜆2 𝜆3 

-0.5 0.096677 0.104605 0.12648 0.138974 0.151083 0.182909 

-0.4 0.096602 0.104057 0.126286 0.138861 0.150897 0.182624 

-0.3 0.096582 0.104393 0.126319 0.138828 0.150338 0.182123 

-0.2 0.096568 0.10433 0.126205 0.138805 0.150686 0.182278 

-0.1 0.096164 0.104224 0.125977 0.138787 0.15055 0.18219 

0 0.096555 0.104261 0.12595 0.138309 0.150608 0.182157 

0.1 0.096473 0.104297 0.125988 0.138609 0.150657 0.182205 

0.2 0.096558 0.104335 0.128125 0.138794 0.150716 0.182293 

0.3 0.096614 0.104406 0.126153 0.138883 0.150804 0.182438 

0.4 0.096646 0.104493 0.126299 0.138929 0.150926 0.182645 

0.5 0.096677 0.104605 0.12648 0.138974 0.151083 0.182909 
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Table 4 Variation of frequency parameters 𝜆𝑚 (𝑚 = 1,2,3)  with respect to the 
thickness parameter 𝜂 under S-S boundary conditions for two layered shells 
 

𝐻 = 0.02, 𝛿 = 0.5, 𝐿 = 1.5   

𝜂 
𝑛 = 2  𝑛 = 4 

𝜆1 𝜆2 𝜆3  𝜆1 𝜆2 𝜆3 

0.5 0.095324 0.098769 0.134802  0.136534 0.142886 0.166433 

0.7 0.113475 0.117541 0.144282  0.161378 0.168945 0.205873 

0.9 0.10063 0.104272 0.125936  0.143872 0.150654 0.181005 

1.1 0.091355 0.09469 0.11315  0.13108 0.137276 0.163357 

1.3 0.084246 0.087351 0.103583  0.121195 0.126968 0.149934 

1.5 0.078574 0.08152 0.09607  0.113267 0.118714 0.139365 

1.7 0.073909 0.076719 0.089325  0.106725 0.111888 0.130734 

1.9 0.069987 0.072696 0.084924  0.1012 0.106155 0.123541 

2.1 0.066627 0.069258 0.080648  0.096458 0.101231 0.117286 

 
 
 
Table 5 Variation of frequency parameters 𝜆𝑚 (𝑚 = 1,2,3)  with respect to the 
thickness parameter 𝐶𝑒 under S-S boundary conditions for two layered shells 
 

𝐻 = 0.02, 𝛿 = 0.5, 𝐿 = 1.5   

𝐶𝑒  
𝑛 = 2 𝑛 = 4 

𝜆1 𝜆2 𝜆3 𝜆1 𝜆2 𝜆3 

-0.2 0.085876 0.089042 0.105782 0.123464 0.129365 0.153051 

-0.1 0.082039 0.085096 0.100674 0.11812 0.123794 0.145867 

0 0.095656 0.099122 0.119033 0.137027 0.143501 0.171503 

0.1 0.110925 0.111199 0.135419 0.153058 0.160234 0.193924 

0.2 0.121682 0.1219 0.150705 0.167091 0.174851 0.214148 
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Table 6 Variation of frequency parameters 𝜆𝑚 (𝑚 = 1,2,3)  with respect to the 
thickness parameter 𝐶𝑠 under S-S boundary conditions for two layered shells 
 

𝐻 = 0.02, 𝛿 = 0.5, 𝐿 = 1.5   

𝐶𝑠  
𝑛 = 2 𝑛 = 4 

𝜆1 𝜆2 𝜆3 𝜆1 𝜆2 𝜆3 

-0.5 0.095764 0.099696 0.115452 0.137472 0.144415 0.16668 

-0.4 0.095204 0.098662 0.116731 0.136361 0.142775 0.166477 

-0.3 0.095349 0.098763 0.115404 0.136573 0.142995 0.166494 

-0.2 0.095477 0.098898 0.115532 0.136745 0.143127 0.177128 

-0.1 0.095584 0.099022 0.121718 0.136898 0.14332 0.174865 

0 0.095656 0.099122 0.119033 0.137027 0.143501 0.171503 

0.1 0.095701 0.099229 0.117613 0.137136 0.143279 0.169578 

0.2 0.095726 0.099338 0.116685 0.137235 0.143863 0.168329 

0.3 0.095744 0.09946 0.116078 0.137325 0.144032 0.167493 

0.4 0.095753 0.099579 0.11567 0.137401 0.14412 0.166882 

0.5 0.095764 0.099696 0.115452 0.137472 0.144415 0.16668 

 
 
5. CONCLUSION 
 
This study analyses the effect of thickness variation of cylindrical shells filled with fluid 
on frequencies. Based on the results, thickness variation (linear, exponential, sinusoidal) 
of the cylindrical shells significantly affects the frequencies. It can be highlighted that  
S-S boundary conditions give lower frequencies compared to C-C boundary conditions. 
An increase in the length of the cylinder leads to a decrease frequency of the shells. 
The findings of this study can be used to optimise the design of cylindrical shells by 
tailoring the variable thickness to achieve desired vibration characteristics. In addition, 
the effect of fluid interaction on shells, shell geometry, material properties and boundary 
conditions cannot be ignored as these factors significantly influence the vibrational 
behaviour. 
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